

Tetrahedron Letters 43 (2002) 1701-1703

TETRAHEDRON LETTERS

Palladium-catalyzed reduction of ketones with "Bu₂SnH₂

Ikuyo Kamiya and Akiya Ogawa*

Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan Received 29 October 2001; revised 4 January 2002; accepted 7 January 2002

Abstract—Whereas the Pd(PPh₃)₄-catalyzed reduction of ketones with "Bu₃SnH does not proceed at all, the use of "Bu₂SnH₂, instead of "Bu₃SnH, leads to the efficient reduction of a variety of ketones in the presence of a catalytic amount of Pd(PPh₃)₄ under mild conditions, providing the corresponding alcohols in good yields. The stereoselectivity in the reduction of cyclic ketones is also investigated by using this Pd(PPh₃)₄/"Bu₂SnH₂ reduction system. © 2002 Elsevier Science Ltd. All rights reserved.

Organotin hydrides are extensively utilized in organic synthesis as useful reducing reagents for alkyl halides and carbonyl compounds under radical or ionic conditions.^{1–3} In addition to these reactions, the tin hydride reduction of acid chlorides,⁴ thioesters,^{5a} and selenoesters^{5b} to the corresponding aldehydes is found to take place very smoothly by using transition metal catalysts such as palladium(0) catalysts. However, little is known about the examples of transition-metal-catalyzed reduction of ketones with "Bu₃SnH.⁶ In fact, the attempted reduction of ketones such as 2-octanone with tri(*n*-butyl)tin hydride (1.2 equiv.) in the presence of Pd(PPh₃)₄ catalyst did not proceed at all (Eq. (1)).

$$+ {}^{n}\text{Bu}_{3}\text{SnH} \xrightarrow{\text{Pd}(\text{PPh}_{3})_{4}} (0.4 \text{ mol}\%) \text{ no reaction}$$
toluene, r.t., 3 h
(1)

Herein we report a novel finding that, when $^{n}Bu_{2}SnH_{2}$, instead of $^{n}Bu_{3}SnH$, is employed for the Pd(PPh₃)₄-catalyzed reduction system, a variety of ketones can be successfully reduced to the corresponding alcohols under mild conditions (Eq. (2)).

$$\mathbb{R}^{O}_{\mathsf{R}'} + {}^{n}\mathsf{Bu}_{2}\mathsf{SnH}_{2} \xrightarrow{\mathsf{Pd}(\mathsf{PPh}_{3})_{4}} (1 \text{ mol}\%) \xrightarrow{\mathsf{OH}} \mathbb{R}^{OH}_{\mathsf{R}'} (2)$$

As can be seen from Eq. (3), 2-octanone is efficiently reduced with ${}^{n}Bu_{2}SnH_{2}{}^{7}$ in the presence of a catalytic amount of Pd(PPh₃)₄, while, in the absence of Pd(PPh₃)₄, the reduction does not proceed at all in the

dark. Even in the absence of $Pd(PPh_3)_4$, however, the reduction of 2-octanone with "Bu₂SnH₂ takes place if the reaction vessel is not shielded from room light, most probably by a radical mechanism induced by room light. Therefore, the palladium(0)-catalyzed reductions of ketones were carried out in the dark.⁸

\sim	• * *	'Bu₂SnH₂ ·	toluene r.t., 3 h	ОН	(3)
Entry	Catalyst	Mol%	Condition	Yield (%)	
$\frac{1}{2}$	Pd(PPh ₃) ₄	1 0 0	Dark Dark Room light	>95 0 84	

Table 1 represents the results of the $Pd(PPh_3)_4$ -catalyzed reduction of ketones with "Bu₂SnH₂.^{9,10} A variety of ketones undergo the palladium-catalyzed reduction with "Bu₂SnH₂ conveniently, providing the corresponding alcohols in good yields. Functionalities such as olefinic (both unconjugate and conjugate¹¹), ester, alkoxyl, and fluoro groups, are tolerant to the reduction (entries 1, 4, 3, 6, and 7). On the other hand, the palladium-catalyzed reduction of di(*sec*-alkyl) ketones such as dicyclohexyl ketone led to the formation of the corresponding alcohol in low yields (56%), probably due to the sterical hindrance. Although aromatic ketones, e.g. benzophenone, generally provide the low

0040-4039/02/\$ - see front matter 0 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00078-3

Keywords: transition metal catalyst; tin hydrides; mild conditions; high efficiency.

^{*} Corresponding author. Tel.: +81-742-20-3979; fax: +81-742-20-3979; e-mail: a.ogawa@cc.nara-wu.ac.jp

^aReaction conditions: substrate (1 mmol), ⁿBu₂SnH₂ (2 mmol, added dropwise over 2 h), Pd(PPh₃)₄ (1 mol%), toluene (1 mL), 25 °C, 3 h. ^bDetermined by ¹H NMR. ^cPd(PPh₃)₄ (1 mol%), Galvinoxyl (30 mol%), 0 °C, 3 h. ^dWithout catalyst, Galvinoxyl (30 mol%), 0 °C, 3 h.

yield (32%) of the corresponding alcohols under the standard reduction conditions, prolonged reaction time (4 h) leads to the increase of the yield (91%).

To get insight into the reaction pathway, a cyclopropyl n-hexyl ketone was used as a substrate for the palla-

Scheme 1. Reduction of a cyclopropyl ketone.

dium-catalyzed reduction. If radical species such as "Bu₂SnH[•] participates in this reduction, cyclopropylcarbinyl radical intermediate (A) might be generated in situ. Since the ring-opening rate for cyclopropylcarbinyl radicals is known to be as fast as 10⁸ s⁻¹,¹² a ringopened reduction products (2 or 3) might be formed. However, such products were not observed at all and only 1-cyclopropyl-1-heptanol (1) was obtained in the palladium-catalyzed reduction (Scheme 1). In addition, cyclopropyl n-hexyl ketone was not reduced with ^{*n*}Bu₂SnH₂ in the absence of Pd(PPh₃)₄, as can be seen from Eq. (4). On the other hand, the reduction of cyclopropyl *n*-hexyl ketone, upon irradiation with a tungsten lamp through Pyrex (hv > 300 nm), proceeded and gave the alcohol (1) and the ring-opened alcohol (3) in the ratio of 8:2 (Eq. (5)). These results suggest that the present palladium-catalyzed reduction does not involve the radical mechanism.

Moreover, the stereoselectivity of this reduction was investigated by using several cyclic ketones (Table 2). LiAlH₄ and NaBH₄, as general reducing agents for carbonyl compounds, are known to indicate the axial attack preferentially,¹³ whereas bulky reagents such as Li](CH₃)₂CHCH(CH₃)]₃BH prefer the equatorial attack

Table 2. Stereoselectivity in the reduction of cyclic ketones

^aReaction conditions: substrate (1 mmol), ⁿBu₂SnH₂ (2 mmol, added dropwise over 2 h), Pd(PPh₃)₄ (1 mol%), toluene (1 mL), 25 °C, 3 h. ^bDetermined by ¹H NMR.

due to the steric repulsion with substrates.¹⁴ The present reduction of cyclic ketones proceeded almost quantitatively, and their stereoselectivities indicated similar trends as the $LiAlH_4$ - and $NaBH_4$ -reduction.

In conclusion, we have developed the first example of palladium-catalyzed reduction with " Bu_2SnH_2 . Although the transition-metal-catalyzed reduction of ketones with " Bu_3SnH does not take place at all, the use of " Bu_2SnH_2 in the palladium-catalyzed reduction system makes it possible to reduce various ketones. Further investigations to clarify the precise reaction pathway are now in progress.

Acknowledgements

We thank Ms. Atsuko Kudo for her contribution to this work at the initial stage. Financial support of this work by a Grant-in-Aid for Scientific Research from the Ministry of Education, Sports and Culture, Japan is gratefully acknowledged.

References

- 1. Pereyre, M.; Quintard, J.-P.; Ralhm, A. *Tin in Organic Synthesis*; Butterworths: London, 1987.
- 2. Harrison, P. G. *Chemistry of Tin*; Blackie & Son: New York, 1989.
- 3. Davies, A. G. Organotin Chemistry; VCH: Weinheim, 1997.
- 4. Four, P.; Guibe, F. J. Org. Chem. 1981, 46, 4439.
- (a) Kuniyasu, H.; Ogawa, A.; Sonoda, N. *Tetrahedron Lett.* **1993**, *34*, 2491; (b) Kuniyasu, H.; Ogawa, A.; Higaki, K.; Sonoda, N. *Organometallics* **1992**, *11*, 3937.
- 6. Keinan, E.; Gleize, P. A. Tetrahedron Lett. 1982, 23, 477.
- Ferkous, F.; Messadi, D.; De Jeso, B.; Degueil-Castaing, M.; Maillard, B. J. Organomet. Chem. 1991, 420, 315.
- A trace amount of oxygen contaminated in the reduction system sometimes induces the radical reduction with "Bu₂SnH₂, of some ketones bearing an electron-with-

drawing group. In these cases, we examined the transition-metal-catalyzed reduction in the presence of Galvinoxyl as a radical inhibitor at lower temperature $(0^{\circ}C)$, because these conditions suppress the radical reduction effectively (see entries 7–9 in Table 1).

- 9. The following is a general method for the palladium-catalyzed reduction of ketones: Di-n-butyltin dihydride ("Bu₂SnH₂) was prepared by the reduction of "Bu₂SnCl₂ (82 mmol) with LiAlH₄ (62 mmol) in diethyl ether (100 mL) at 40°C for 4 h, and was purified by distillation under reduced pressure (bp 55°C/7 mmHg).⁷ Toluene was purified by distillation from calcium hydride (CaH₂). All reactions were carried out in a flame-dried two-necked flask in the dark under an atmosphere of nitrogen with magnetic stirring. "Bu₂SnH₂ (2 mmol) was added dropwise over 2 h via a syringe to a solution of substrate (1 mmol) and Pd(PPh₃)₄ (1 mol%=0.01 mmol) in toluene (1 mL) at room temperature (or 0°C). After the reaction mixture was stirred for 1 h, toluene was removed under reduced pressure. Purification of the product was carried out by using a recycling preparative HPLC (Japan Analytical Industry Co. Ltd., model LC-908) equipped with JAIGEL-1H and -2H columns (GPC) using CHCl₃ as an eluent.
- In the presence of palladium catalyst, "Bu₂SnH₂ is easily decomposed to di-(or oligo-) stannane and molecular hydrogen. To suppress this side reaction, the palladiumcatalyzed reduction of ketones requires the use of excess "Bu₂SnH₂ (1.5–2.0 equiv.) and the slowly dropping of "Bu₂SnH₂.
- 11. $Pd(PPh_3)_4$ -catalyzed reduction of α,β -unsaturated ketones with "Bu₃SnH in more polar solvents such as THF in the presence of proton sources is reported to provide the corresponding saturated ketones (see Ref. 6).
- (a) Bowry, V. W.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1991, 113, 5687; (b) Bowry, V. W.; Ingold, K. U. J. Am. Chem. Soc. 1991, 113, 5699.
- (a) Cherest, M.; Felkin, H.; Prudent, N. *Tetrahedron Lett.* **1968**, 2205; (b) Cherest, M.; Felkin, H. *Tetrahedron Lett.* **1971**, 383.
- Krishnamurthy, S.; Brown, H. C. J. Am. Chem. Soc. 1976, 98, 3383.